Abstract:
Dynamic spectrum sharing will facilitate the interference coordination in device-to-device (D2D) communications. In the absence of network level coordination, the timing synchronization among D2D users will be unavailable, leading to inaccurate channel state estimation and device detection, especially in time-varying fading environments. In this paper, we design an asynchronous device detection/discovery framework for cognitive-D2D applications, which acquires timing drifts and dynamical fading channels when directly detecting the existence of a proximity D2D device (e.g. or primary user). To model and analyze this, a new dynamical system model is established, where the unknown timing deviation follows a random process, while the fading channel is governed by a discrete state Markov chain. To cope with the mixed estimation and detection problem, a novel sequential estimation scheme is proposed, using the conceptions of statistic Bayesian inference and random finite set. By tracking the unknown states (i.e. varying time deviations and fading gains) and suppressing the link uncertainty, the proposed scheme can effectively enhance the detection performance. The general framework, as a complimentary to a network-aided case with the coordinated signaling, provides the foundation for development of flexible D2D communications along with proximity-based spectrum sharing.