A Robust Load Balancing and Routing Protocol for Intra Car Hybrid Wired Wireless Networks in NS2
A Robust Load Balancing and Routing Protocol for Intra Car Hybrid Wired Wireless Networks in NS2
Abstract
With the emergence of connected and autonomous vehicles, sensors are increasingly deployed within cars to support new functionalities. Traffic generated by these sensors congest traditional intra-car networks, such as CAN buses. Furthermore, the large amount of wires needed to connect sensors makes it harder to design cars in a modular way. To alleviate these limitations, we propose, simulate, and implement a hybrid wired/wireless architecture, in which each node is connected to either a wired interface or a wireless interface or both. Specifically, we propose a new protocol, called Hybrid-Backpressure Collection Protocol (Hybrid-BCP), to efficiently collect data from sensors in intra-car networks. Hybrid-BCP is backward-compatible with the CAN bus technology, and builds on the BCP protocol, designed for wireless sensor networks. We theoretically prove that an idealized version of Hybrid-BCP achieves optimal throughput. Our testbed implementation, based on CAN and ZigBee transceivers, demonstrates the load balancing and routing functionalities of Hybrid-BCP and its resilience to DoS attacks and wireless jamming attacks. We further provide simulation results, obtained with the ns-3 simulator and based on real intra-car RSSI traces, that compare between the performance of Hybrid-BCP and a tree-based data collection protocol. Notably, the simulations show that Hybrid-BCP outperforms the tree-based protocol on throughput by 12 percent. The results also show that Hybrid-BCP maintains high packet delivery rate and low packet delay for safety-critical sensors that are directly connected to the sink through wire.